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ABSTRACT

Solar flares create adverse space weather impacting space and Earth-based technologies. However,

the difficulty of forecasting flares, and by extension severe space weather, is accentuated by the lack of

any unique flare trigger or a single physical pathway. Studies indicate that multiple physical properties

contribute to active region flare potential, compounding the challenge. Recent developments in Machine

Learning (ML) have enabled analysis of higher dimensional data leading to increasingly better flare

forecasting techniques. However, consensus on high-performing flare predictors remains elusive. In the

most comprehensive study till date, we conduct a comparative analysis of four popular ML techniques

(K-Nearest Neighbor, Logistic Regression, Random Forest Classifier, and Support Vector Machine)

by training these on magnetic parameters obtained from the Helioseismic Magnetic Imager (HMI)

onboard the Solar Dynamics Observatory (SDO) during the entirety of solar cycle 24. We demonstrate

that Logistic Regression and Support Vector Machine algorithms perform extremely well in forecasting

active region flaring potential. The logistic regression algorithm returns the highest true skill score

of 0.967 ± 0.018, possibly the highest classification performance achieved with any parametric study

alone. From a comparative assessment, we establish that the magnetic properties like total current

helicity, total vertical current density, total unsigned flux, R value, and total absolute twist are the

top-performing flare indicators. We also introduce and analyze two new performance metrics, namely,

Severe and Clear Space Weather indicators. Our analysis constrains the most successful ML algorithms

and identifies physical parameters that contribute most to active region flare productivity.

1. INTRODUCTION

Solar flares are sudden bursts of electromagnetic ra-

diation from the solar atmosphere, mainly in the ex-

treme ultraviolet and X-ray regime. They are clas-

sified into different categories based on the peak X-

ray flux recorded in the 1–8 Å band by the Geosta-

tionary Operational Environmental Satellite (GOES).

The X-class flares are the most powerful with peak flux
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≥ 10−4 W m−2, followed by M-class flares with peak flux

≥ 10−5 W m−2. These classes of flares strongly influ-

ence the near-Earth space weather and present a bigger

potential hazard to human space endeavors than flares

with lower peak intensities, which, in decreasing order of

intensities, belong to C, B, and A classes, respectively.

From previous studies we know that solar flares

originate in active region (AR) structures, where the

magnetic flux system becomes energized due to rapid

flux emergence, instability, or topological changes of

the magnetic configuration via reconnection processes

(Forbes 2000; Priest & Forbes 2002; Schrijver 2007; Leka

& Barnes 2003a,b; Nandy et al. 2003; Hahn et al. 2005;
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Jing et al. 2006). A solar active region with a potential

or near-potential magnetic field builds up magnetic non-

potential energy (or free magnetic energy) upon being

sheared and twisted. A fraction of this free energy is dis-

sipated during a flare event (e.g., Schrijver et al. 2008),

and a typical large solar flare can release large quantities

of energy of the order of 1032–1033 erg. Simultaneously,

solar energetic particles are also released into the solar

wind. Solar flares are often accompanied by Coronal

Mass Ejections (CMEs), which pose serious threats if

directed towards the Earth. Earlier studies have shown

that magnetic characteristics of active regions (Yeates

et al. 2010; Pal et al. 2018, 2017) and filaments deter-

mine their propensity to flare and produce associated

CMEs (Sinha et al. 2019).

Solar flares (and CMEs) induce extreme space weather

conditions that have the potential to harm satellites

and impact communication and navigation sectors. The

most energetic solar flares can cause electric power grid

failures, radio communication blackouts, impact astro-

naut health, and expose air passengers to harmful doses

of radiation (Eastwood et al. 2017; Schrijver 2015; Schri-

jver et al. 2015; Hapgood 2011). Proactive measures

to mitigate the physical and economic impact of space

weather are therefore much sought after, of which early

warning systems are of foremost interest. While physical

model based studies have demonstrated strong poten-

tial of success in recent times towards predicting long-

term solar activity variations over decadal timescales

(Bhowmik & Nandy 2018; Nandy 2021; Nandy et al.

2021), physical model based assessment of active region

flaring probability remains elusive.

The creation of knowledge towards predicting solar

flares initiated with statistical approaches applied on

observational data well before machine learning tech-

niques found favour. In a set of pioneering studies with

vector magnetogram data Leka & Barnes (2003b) and

Barnes et al. (2007) conducted a multi-parametric sta-

tistical study to classify between flaring and flare-quiet

active regions based on discriminant analysis.

One of the early applications of machine learning in so-

lar physics was the automatic real-time detection of solar

flares from Hα images (e.g., Fernandez Borda et al. 2002;

Qu et al. 2003). Very soon, efforts were directed towards

the forecast of solar flares. A number of machine learn-

ing methods were trained on sunspot-associated data to

forecast solar flares (Li et al. 2007; Qahwaji & Colak

2007; Benvenuto et al. 2018; Cinto et al. 2020). Co-

lak & Qahwaji (2009) used neural networks to make

multi-class forecasts based on sunspot area and McIn-

tosh classification data. Line-of-sight full-disk magne-

togram data from the Solar and Heliospheric Observa-

tory’s (SOHO) Michelson Doppler Imager (MDI) pre-

sented the next opportunity in the development of so-

lar flare forecasting methods and several advances were

made by using features calculated from them. Deci-

sion tree classifiers, Learning Vector Quantization, Ordi-

nal Logistic regression, Support Vector Machine (SVM),

and AdaBoost methods were experimented with by Yu

et al. (2009), Song et al. (2009), Yuan et al. (2010),

Huang et al. (2010) and Lan et al. (2012). Ahmed

et al. (2013) applied Cascade-Correlation Neural Net-

work and used feature evaluation algorithms to remove

redundant features and show that a smaller set of pa-

rameters yielded comparable results to the entire set.

Huang et al. (2018) combined the line-of-sight magne-

tograms from MDI and the Solar Dynamics Observa-

tory’s (SDO) Helioseismic and Magnetic Imager (HMI)

to create an extensive dataset and evaluated the per-

formance of a Convolutional Neural Network on these

data.

Following the launch of SDO in 2010, its HMI in-

strument (Scherrer et al. 2012) started providing one of

the most advanced unhindered full-disk vector magne-

tograms. To facilitate active region based event fore-

casting, the Spaceweather HMI Active Region Patch

(SHARP) data product (Bobra et al. 2014) provides cut-

outs of automatically tracked magnetic flux concentra-

tions on the solar disc. Using SHARP data, Bobra &

Couvidat (2015) implemented an SVM algorithm to dis-

tinguish between Active Regions producing an M or X

class flare (in the next 24 hours) and those not produc-

ing any flare or low intensity flares. Bobra & Couvi-

dat (2015) presented a significant improvement in the

performance of AR-parameter based machine learning

algorithms, primarily because of the availability of con-

tinuous, high-quality HMI vector-magnetogram data to

derive input magnetic features.

These recent advances piqued the interest of both so-

lar physics and computer science communities heralding

a close interdisciplinary collaboration in solar flare fore-

casting. Liu et al. (2017) attempted a multi-class clas-

sification using Random Forest, Nishizuka et al. (2017)

and Florios et al. (2018) compared various ML algo-

rithms which includes SVM, Multi-Layer Perceptrons,

Random Forest and k-Nearest Neighbors (KNN) algo-

rithm, Nishizuka et al. (2018, 2020) trained a deep Neu-

ral Network for binary classification, and Campi et al.

(2019) used the Hybrid LASSO and the Random Forest

algorithms on features derived during the FLARECAST

project. In a recent study, Ribeiro & Gradvohl (2021)

used LightGBM for flare forecasting and showed a nice

comparison with existing ML models. Classification us-

ing KNN was attempted by Hamdi et al. (2017) for uni-
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variate time series and by Filali Boubrahimi & Angryk

(2018) for multivariate time series. Decision trees were

used by Ma et al. (2017) for multivariate time series. Liu

et al. (2019) implemented time series classification by

training Long Short-Term Memory (LSTM) Neural Net-

works on SHARP features and flare history parameters.

A similar approach was followed by Jiao et al. (2020)

who built classification models on an LSTM regressor.

Chen et al. (2019) compared LSTM models trained on

SHARP parameters and autoencoder-derived features.

Using wavelet analysis and features derived from SDO

HMI magnetograms, Support Vector Regression was ap-

plied to forecast the X-ray flux by Muranushi et al.

(2015) and Boucheron et al. (2015), while Al-Ghraibah

et al. (2015) attempted classification using Relevance

Vector Machines. Zernike moments calculated from im-

ages were also used for binary classification with SVM

(Raboonik et al. 2017; Alipour et al. 2019). Strong-

field high-gradient Polarity Inversion Line (PIL) fea-

tures derived from SHARP images were used by Sadykov

& Kosovichev (2017) for classification comparing SVM

and a graphical method, while Wang et al. (2019) used

SHARP parameters weighed with a PIL mask to im-

prove individual parameter performance on a Random

Forest Classifier. Dhuri et al. (2019) and Hazra et al.

(2020) studied the time evolution of various magnetic

parameters and the correlations between them. They

trained and tested Logistic Regression, SVM, Gradi-

ent Boost, Random Forest, Multilayer Perceptron, KNN

and Näıve Bayes classifier on SHARP feature data with

good performance.

With rapid developments in the field of Machine

Learning (ML) and image processing, it became possible

to process images directly using Convolutional Neural

Networks (CNNs). Jonas et al. (2018) used vector mag-

netic field data from HMI as well as multi-wavelength

image data of the chromosphere, transition region and

corona to train a single-layer CNN, and obtained re-

sults comparable to Bobra & Couvidat (2015). Zheng

et al. (2019), Li et al. (2020) and Bhattacharjee et al.

(2020) used line-of-sight magnetograms to train deep

CNN models.

The underlying non-unique and non-deterministic na-

ture of the triggering mechanisms without well defined

parametric thresholds make flare forecasting a chal-

lenging task making the problem suitable for multi-

parametric statistical approaches and computational

ML algorithms applied to large databases. Attempts

to supplement vector magnetogram data with extreme

ultraviolet images have not yielded significant improve-

ment. On comparing CNN models trained with and

without multi-wavelength image data from the Atmo-

spheric Imaging Assembly (AIA) on board the SDO,

Jonas et al. (2018) found that the best performing model

was the one not provided with AIA data as input. Sim-

ilarly, the implementation of CNN networks have to be

developed further for application on flare forecasting.

Bhattacharjee et al. (2020) found that the CNN output

had spurious dependencies on the magnetogram dimen-

sions.

We limit our comparative analysis to well-studied and

successful machine learning algorithms (limited to para-

metric approach alone for efficiency) to determine their

relative performance. This is achieved by applying these

algorithms to the largest, single-instrument database

suitable for this purpose, i.e., the HMI vector magnetic

field observations.

Over the last two decades a wide range of machine

learning algorithms have been applied to forecast solar

flares. The input data to such algorithms are, most com-

monly, several AR magnetic parameters derived from

magnetograms, magnetogram images and time series

data of magnetic parameters. These works have been

able to achieve reasonably accurate forecast of whether

an active region is going to flare or not and if it does,

in which class the flare lies. Furthermore, these works

have attempted to extract which magnetic parameters

are best correlated with flaring. In general the obtained

results are independent of the algorithms used – un-

signed current density, unsigned flux and current he-

licity came up as key parameters in most of the previ-

ous studies. However, their relative ranking in terms

of which contribute most to the flare potential has not

been rigorously explored.

In this paper, we compare several machine-learning

algorithms to find out which offers the best flare fore-

casting capability. Bobra & Couvidat (2015) and sub-

sequent studies have shown that the magnetic twist pa-

rameter in the SHARP database does not perform well

for machine classification whereas earlier physics-based

works suggests twist is a flare-relevant parameter (Lin-

ton et al. 1996; Nandy et al. 2003; Hahn et al. 2005;

Nandy 2008). We therefore include a global indica-

tor of magnetic twist in our analysis. Furthermore we

introduce two new performance metrics, Severe Space

Weather and Clear Space Weather indicators, to distin-

guish between these two equally important conditions.

Our analysis, detailed in followings sections, is based

on the highest number of unique active regions to date

used in training ML algorithms, from the beginning of

the SDO era to December 2020, covering the entire solar

cycle 24.

2. DATA SELECTION
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Depending on the intensities, flares are categorized

into five classes: A, B, C, M and X in the ascending

order of intensities. In this study, all the active region

information are collected from hmi.sharp cea 720s se-

ries (Bobra et al. 2014) but for a longer time of obser-

vation. We build our dataset considering all the ARs

that have appeared on the Sun starting from 2010 May

to 2020 December. We divide active regions into two

groups – Positive or flaring class and Negative or non-

flaring class. The Positive class is defined such that it

consists of ARs which have produced at least one M or

X class flares in their lifetime. In contrast, the Negative

class is formed by those active regions which produce

only low intensity flares (≤ B class) or did not flare at

all.

We use the XRT Flare Catalog based on the Hinode

Flare Catalogue (Watanabe et al. 2012), and the GOES

flare catalog to collect information of flare events of the

past 10 years, such as flare timing, flare intensities, as-

sociated active regions (NOAA number) and their po-

sitions on the solar disc. GOES flare events are col-

lected from the sunpy.instr.goes module of the python

SunPy library (The SunPy Community et al. 2020). Our

dataset covers the entire solar cycle 24 starting from

May 2010 to December 2020. We find that not all events

in the XRT catalog match with the GOES events list be-

cause of slight differences in flare peak-times. For each

event in the XRT catalog we search for a similar event in

GOES catalog within a time window of 4 minutes cen-

tered at the flare peak time of the XRT event. If a simi-

lar flare event is found in GOES catalog with a same flare

class and NOAA number, we call it a match. Pi-chart in

Figure 1 depicts the number of matched and unmatched

events in the two catalogs. Following this, a total of 668

matched and 80 unmatched events in the XRT catalog

is obtained with flare intensity ≥ M class. Manual in-

spection of these 80 unmatched events with more lenient

conditions, for example, allowing flare peak-time differ-

ence up to 15 minutes, results in a further reduction in

the number of unmatched events by 57. The negative

dataset is prepared by excluding flare associated active

regions from all recorded SHARP regions during our ob-

servational time domain.

All the magnetic parameters representing the flaring

AR are either collected from SHARP header keywords or

calculated from the vector magnetic field data, 24 hours

before the flare peak-time. For the negative/non-flaring

class, we choose the magnetogram observation at the

central-time snap of their entire lifespan on the visible

disc. In addition, if an active region’s position vector

from the sun center makes an angle greater than 70◦

with the line of sight, we discard that region from our

87.9%

Unmatched
 events in XRT

5.5% Unmatched
 events in GOES

6.6%

Matched
 events in XRT

Figure 1. Distribution of matched and unmatched events
between XRT and GOES flare catalog

analysis, which is a standard method to avoid high pro-

jection effects. We have implemented this 70◦ positional

filter in the last step of our data-preparation process so

that it only restricts our domain of analysis, not the do-

main of our observation. In other words, this ensures

that any AR producing an M/X class flare outside this

70◦ angular region has not been included in our negative

class.

Following all these selection criteria, our final positive

class contains 503 flaring events and the negative class

consists of 3358 non flaring events. Note that in our pos-

itive class, recurrent flare events are treated as separate

events with different entries. Whereas each non-flaring

SHARP region has single entry in the negative class.

3. METHODS AND ANALYSIS

Preparing the input data and proper training of model

are the most crucial steps while working with ML algo-

rithms (Ahmadzadeh et al. 2021). SHARP data comes

with various magnetic parameters, calculated from the

vector-magnetic field maps of ARs. Previous stud-

ies showed the importance of these derived parame-

ters in characterizing AR properties and complexities

(Hagyard et al. 1984; Leka & Barnes 2003c,d; Geor-

goulis & Rust 2007; LaBonte et al. 2007; Moore et al.

2012). Bobra & Couvidat (2015) identified 13 such pa-

rameters which they found are most useful in describ-

ing the flare potential. However, they estimated the

magnetic twist using the parameter called MEANALP,

whose poor performance led them to exclude any con-

tribution of the magnetic twist from their classification.

But, it has been shown that a high twist in the mag-

netic flux rope can store non-potential magnetic en-

ergy and often leads to eruption of the flux rope via

the kink instability (Nandy et al. 2008). Motivated
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by these physical arguments, we calculate 6 new mag-

netic parameters related to AR twist, such as TOTAB-

STWIST, AVG90PABSTWIST, VTWIST, AVGABST-

WIST, AVGTWIST, and MEANALP (see Table 1 for

descriptions). We incorporate these 6 twist related fea-

tures along with those 13 parameters used by Bobra &

Couvidat (2015). Here we assume the force–free field ap-

proximation for the estimation of magnetic twist – also

known as alpha parameter. The vertical twist parame-

ter αz at each pixel of an AR magnetogram is given as,

αz = µ0

(
Jz
Bz

)
, (1)

where Jz and Bz are the z-components of current den-

sity and magnetic field, respectively, and µ0 is the per-

meability of free space. All these 19 features and their

description is listed in Table 1. We perform univari-

ate feature selection analysis with the ANOVA Fisher

statistics (F-statistics) using the python Scikit-learn li-

brary to finalize our set of input magnetic features by

eliminating those which are not very useful for this clas-

sification. The obtained F-score (see Bobra & Couvidat

(2015) for the calculation of F-score) for each feature

is represented in Figure 2. It is quite surprising to note

that all the magnetic twist related parameters (including

MEANALP) are insignificant according to F-statistics

except from the TOTABSTWIST, which ranks third in

the list. This indicates that flare potential is more cou-

pled to gross/extrinsic quantities rather than magnetic

properties at individual pixels. We exclude last five fea-

tures having the lowest normalized F-scores in Figure 2,

i.e., AVG90PABSTWIST, VTWIST, AVGABSTWIST,

AVGTWIST and MEANALP (descriptions in Table 1).

All further analyses are done with the remaining 14 fea-

tures which contain 10 SHARP keyword parameters and

4 derived parameters including one newly introduced pa-

rameter TOTABSTWIST.

Henceforth, each AR is represented by a single data

point in 14-dimensional feature space except those ARs

which have produced multiple M/X class flares. The

latter are accounted as separate events for each M/X

class flares. Our whole dataset, consisting 3861 events,

is randomly divided into two groups, training and test-

ing, with a population ratio of 4:1 respectively. We ar-

range the data such that the ratio of flaring to non-

flaring events is the same for both the training set as

well as the test set. We pre-process the data by nor-

malizing it such that the processed data has zero mean

and unit standard deviation. For this normalization we

solely use the training dataset and then apply the same

population mean and standard deviation to normalize

the test dataset. To make our classification more robust

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Fisher Score

MEANALP
AVGTWIST

AVGABSTWIST
VTWIST

AVG90PABSTWIST
ABSNJZH

EPSZ
SHRGT45

TOTPOT
SAVNCPP

TOTBSQ
TOTFZ

MEANPOT
AREA_ACR

USFLUX
TOTUSJH

TOTABSTWIST
TOTUSJZ
R_VALUE

Figure 2. Normalized F-score ranking of the magnetic field
parameters.

and independent of any bias, we randomly shuffle our

dataset to make 20 similar but differently distributed

representative pairs of training and testing data. We de-

note each such pair with Di where i is a running index

between 1 and 20. Each machine-learning algorithm is

evaluated by its average performance over these 20 Dis.

The schematic diagram of our analysis method is shown

in Figure 3. The following two sections describe how

we quantify model performance and compare between

different ML algorithms.

3.1. Performance metric

Typically, the performance of a ML model is eval-

uated from the confusion matrix. It is a 2 × 2 ma-

trix whose elements are the number of correctly fore-

casted positive class events (TP), number of correctly

forecasted negative class events (TN), number of events

falsely forecasted as positive class (FP) and number of

events falsely forecasted as negative class (FN). In gen-

eral, there are various parameters that can be derived

from the confusion matrix such as accuracy, recall, f1-

score, etc., but their suitability depends on the partic-

ular problem. Simple accuracy is defined as the ratio

of the number of correct forecast to the total number

of forecast. In our data-set, the number of flaring ARs

(positive class) is much less than the number of non-

flaring (negative class) ARs, which means our data-set

is highly imbalanced. Hence we cannot simply use accu-

racy measure to evaluate the models. To deal with this

problem we use Macro Accuracy (MAC)(Pereira et al.

2018) and True Skill Score (TSS) (Woodcock 1976) val-

ues to evaluate our ML-models. Bloomfield et al. (2012)

showed that TSS is unaffected by class imbalance and
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S. No. Keyword Description Normalized F-score

1 R VALUE Sum of unsigned flux near polarity inversion line 1.000

2 TOTUSJZ Total unsigned vertical current 0.927

3 TOTABSTWIST* Total absolute twist calculated over strong field (|B| ≥ 300 G) regions 0.898

4 TOTUSJH Total unsigned current helicity 0.833

5 USFLUX Total unsigned flux 0.707

6 AREA ACR Area of strong field pixels in the active region 0.706

7 MEANPOT Mean photospheric magnetic free energy 0.695

8 TOTFZ* Sum of z-component of Lorentz force 0.579

9 TOTBSQ* Total magnitude of Lorentz force 0.573

10 SAVNCPP Sum of the modulus of the net current per magnetic polarity 0.510

11 TOTPOT Total photospheric magnetic free energy density 0.456

12 SHRGT45 Fraction of Area with shear > 45◦ 0.451

13 EPSZ* Sum of z-component of normalized Lorentz force 0.393

14 ABSNJZH Absolute value of the net current helicity 0.393

15 AVG90PABSTWIST* Average absolute twist for pixels having twist more than 90 percentile value 0.027

16 VTWIST* Standard deviation of twist within an AR 0.013

17 AVGABSTWIST* average absolute value of twist 0.011

18 AVGTWIST* average value of twist 0.000

19 MEANALP Mean value of flux weighted twist 0.000

Table 1. Details of AR parameters extracted from SHARP data. Asterisk (*) denotes parameters that are not readily available
in the SHARP header keywords and are calculated explicitly from the SHARP vector magnetic field data.

Choose different 
values of model 
parameters {C} 

10-fold
cross 

validation

Check model 
performance on 

validation set

Construct 20 
datasets (Di) by 

random shuffling

Test data (20%)Train data (80%)

Train the final 
model

Test the model 
performance in 
each dataset Di

Finally the model is 
judged by the 

average performance 
of all 20 Di

Optimization of 
free model
parameters

Estimate Cbest

for each 
dataset (Di)

Finalize model  
parameter (Copt) by 

selecting most frequent 
Cbest appeared in 20 Di

Figure 3. Schematic diagram of our method of analysis.
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gives an unbiased result. The MAC and TSS are defined

as,

MAC =
1

2

(
TP

TP + FN
+

TN

FP + TN

)
, (2a)

TSS =
TP

TP + FN
− FP

FP + TN
. (2b)

The MAC is the average of the accuracy of each in-

dividual class, hence its value lies between 0 and 1. On

the other hand TSS has two components: the first is the

positive class accuracy and the second is the probabil-

ity of false forecast for the negative class. Using TSS,

we penalize the model’s performance commensurately

by subtracting the false-alarm ratio from the positive

class accuracy. This shows its usefulness in the present

problem as we are more interested in correctly predict-

ing flaring ARs with minimal amount of false detection.

The value of TSS ranges from +1 to −1 and we optimize

our models to maximize the TSS score.

Depending on the end-user application our priorities

for detecting a specific class can change. For example,

one may wish to identify only those regions which have

the potential to flare with a high degree of confidence

without worrying about miss-classifying a non-flaring

region as a flaring region. This motivates a new per-

formance indicator which we term as the Sever Space

weather (SSW) metric defined as,

SSW =
TP− FN

TP + FN
. (3)

Conversely, one may wish to focus on identifying non-

flaring regions only with a high degree of confidence. For

this we define another parameter called the Clear Space

Weather (CSW) metric.

CSW =
TN− FP

TN + FP
. (4)

It is important to note that SSW is only linked to

flaring class events. It indicates the correct identifica-

tion ratio combined with a penalty for misidentification

within the flaring class. Similarly, the CSW deals with

the non-flaring class only. The value of these two met-

rics lies between −1 and +1, where +1 indicates perfect

identification of all the events within a specific class,

whereas −1 indicates the scenario where all events are

misclassified. A metric score of 0 denotes the scenario

where half of the events in a specific class are correctly

identified and the other half are wrongly classified im-

plying no useful classification capability.

Moreover the average value of these two performance

metrics returns the TSS and can be demonstrated as

follows,

SSW + CSW =
TP− FN

TP + FN
+

TN− FP

TN + FP

=
TP

TP + FN
− FP

TN + FP
+

TN

TN + FP
− FN

TP + FN

=
TP

TP + FN
− FP

TN + FP
+

(
TN

TN + FP
− 1

)
+

(
1− FN

TP + FN

)

= 2TSS =⇒ SSW + CSW

2
= TSS.

3.2. Cross validation

One of the most important aspect of any machine

learning algorithm is the optimization of its hyper-

parameters, to achieve best fit on the dataset. If a

classifier performs too well on the training dataset, it

might fail to capture the overall picture and can badly

perform on the test dataset – also known as over-fitting.

The optimization of hyper-parameters is done by em-

ploying a Grid Search algorithm for finding the optimal

hyper-parameters Copt of the training component-set of

each Di. We use 10-fold cross validation on the training

dataset of each Di to avoid the issue of over-fitting. This

process divides the training set into 10 groups of equal

sample size. Training the model on 9 groups, the vali-

dation is done on the 1 remaining group of data points.

This happens 10 times such that each data group is

made the validation set once. The average validation

TSS from this 10-fold cross validation is used to decide

the model hyper-parameters for each dataset Di. We
train our models with different values of model hyper-

parameters and the optimal values of hyper-parameters

Copt are obtained for each Di by maximizing the aver-

age validation TSS. Finally, we choose our operational

model hyper-parameter (Cbest) by selecting the most fre-

quently appearing Copt among these 20 experimental

sets Di. These completes our model optimization pro-

cess. Now we check performance of the finalized model

and judge the model based on the average test perfor-

mance over 20 Di.

3.3. Machine Learning Models

We use four popular supervised ML algorithms avail-

able in the python Scikit-learn library (Pedregosa et al.

2011). These four algorithms are K-Nearest Neighbors

(KNN), Logistic regression (LR), Random Forest Clas-

sifier (RFC) and Support Vector Machine (SVM); they
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are discussed briefly in this section. In all four models,

the model parameters are tuned properly to get the best

achievable performance, which is TSS in our case. The

optimal model parameters of all four models are selected

from the histogram plot of Figure 4. A general overview

of these ML algorithms can be found in Bishop (2013)

or Mehta et al. (2019).

1. KNN: This is an instance-based machine learning

technique which uses instances of training data to

compute the machine classification based on a sim-

ple majority vote of ‘k’ number of nearest neigh-

bors of each point (Fix & Hodges 1951). When the

dataset is not large, as in our case, using the KNN

classifier poses no disadvantage as it does not cre-

ate an internal model which might otherwise use a

large memory space. In our model, the weights as-

signed to each neighbor are equal and the nearest

neighbors are calculated using Euclidean distance.

The best KNN model is obtained by finding the

optimal K, i.e., the optimal value of the number

of nearest neighbors to maximize the TSS output.

We search for the optimal K value between 1 to

16 in 20 datasets (Di) to get the maximum TSS.

Figure 4(a) shows the histogram plot of optimal

K values for 20 different datasets. Since K = 3

has the highest number of occurrences, it becomes

our final choice.

2. LR: This classifier, also known as the log-linear

classifier, is a linear classification model which uses

the sigmoid function to classify into discrete cat-

egories (Mehta et al. 2019). This makes it ex-

tremely suitable for binary classification problems.

Our model uses regularized logistic regression, and

is implemented using the Logistic Regression clas-
sifier available in scikit-learn. The only free pa-

rameter of this model, as we have used, is the reg-

ularization parameter C, and the most favorable

value is estimated from within the range [0.0001,

10000.0], varied with logarithmic increments. In

Figure 4(b) we can see that the occurrence is max-

imum at C = 1000, hence we choose 1000 as the

optimal C parameter.

3. RFC: This classifier consists of a large number of

individual decision tree classifiers which operate as

an ensemble (Tin Kam Ho 1995). Each decision

tree is trained on a subset of the entire dataset.

Generally, decision trees tend to overfit the data

and exhibit high variance. Random forests are

constructed in such a way so as to decrease the

variance. The overall prediction is generated by

taking an average of the constituent tree predic-

tions, which tends to cancel out some prediction

errors from individual trees. Thus, a large num-

ber of uncorrelated trees can produce largely ac-

curate ensemble predictions. Our model uses the

RFC available with the scikit-learn package, and

the best forest is created by varying the number

of trees (also called as ’N-estimator’) in the forest

from 10 to 1000. We can see from figure 4(c) that

occurrence is maximum for N -estimator = 120.

Therefore, we select 120 as the optimal value of

the number of trees.

4. SVM: It is a powerful classification technique

(Cortes & Vapnik 1995), and has previously

yielded better results amongst various machine

learning models, when applied to solar flare predic-

tion based on SHARP parameters. SVM works by

creating a decision boundary, marked by a subset

of training points called support vectors, to sepa-

rate the positive and negative events in the train-

ing data. It uses a kernel function to map the data

points to higher-dimensional space. Our model

uses a Gaussian Radial Basis Function (RBF) as

the kernel and assigns the class weight inversely

proportional to the class frequency to handle the

class imbalance problem. The kernel coefficient

gamma (γ) and the regularization parameter C are

varied within the ranges [0.0001, 10.0] and [0.001,

100.0] respectively, to get the best SVM model by

comparing the TSS scores. The decision bound

From Figure 4(d) we can see the optimal values

of C and γ are 100 and 0.001 respectively, as this

combination produces the highest TSS score in 7

out of 20 Di.

4. RESULTS

Each ML classifier is trained with the finalized hyper-

parameters (Cbest) on the training set of each Di, and

then the trained model is applied on the test set in that

Di. The average and standard deviation of the perfor-

mance metrics over these 20 test sets are reported in

Table 2. We find that all of these models work reason-

ably well for identifying flaring and non-flaring active

regions. The performance of both LR and SVM are very

similar, better than that of KNN and RFC. The average

TSS of LR and SVM are 0.967 and 0.965 respectively.

Therefore, we claim that LR and SVM are equally good

in performance. For further analysis we primarily fo-

cus on LR because of its marginally higher TSS value.

The comparison of the four ML classifiers is depicted

in Figure 5. We achieve a remarkable MAC of 0.983

for both LR and SVM. The SSW is also much higher
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Figure 4. These plots represent the values of optimal parameters which gives best TSS score on the validation dataset for each
experimental dataset (Di)

Classifier
Name

Average Performance Measure in 20 trials
when the models are optimized for TSS

An Example of Confusion
Matrix Elements

SSW CSW TSS MAC TN TP FN FP

KNN 0.887± 0.040 0.990± 0.006 0.938± 0.019 0.969± 0.010 663 110 6 3

Random
forest

0.898± 0.042 0.989± 0.008 0.944± 0.020 0.972± 0.010 664 101 6 2

Logistic
regression

0.959± 0.033 0.975± 0.009 0.967± 0.018 0.983± 0.009 669 94 1 9

SVM 0.956± 0.031 0.974± 0.010 0.965± 0.017 0.983± 0.009 656 105 2 10

Table 2. Performance of classifiers trained with the best hyper-parameters deduced via Grid Search and 10-fold cross-validation
over 20 randomly shuffled datasets. The confusion matrix elements correspond to a test dataset in Di whose TSS is closest to
the determined mean.
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Figure 5. This plot depicts the classification performance
of all four models.

for LR (and SVM) compared to RFC or KNN which

indicates the suitability of LR (and SVM) in highly ac-

tive space weather circumstances. Also the close values

of SSW and CSW tells us about the unbiased nature

of the model predictions. Clearly, LR/SVM is a better

choice over KNN/RFC for having a very similar SSW

and CSW scores. An example of the confusion matrix

elements corresponding to a seed value of Di with TSS

close to the mean value is also shown in Table 2.

To understand which active region parameters are

more useful in determining the flaring capability of an

AR, we train our models with the 14 AR parameters

individually. The outcome of this experiment for LR

is presented in Figure 6 where all these AR parame-

ters are plotted along the y-axis in ascending order of

their individual TSS scores. This implies that the top

most parameter in the y-axis is the most significant one

having highest individual classification capability and as

we move downward, we find parameters of lesser impor-

tance.

The ranking of input features based on the individ-

ual TSS scores depends on the ML model used, and

can moderately differ for different models. For a par-

ticular ML algorithm, feature ranking may also depend

on the model hyper-parameters. Hence to get a more

general global ranking of features, we follow a marking

scheme in which we assign points (ranging from 1 to

14) to each parameter based on their individual TSS-

ranking for each of the four models and the univariate

F-score ranking. For example, for LR 14 points are as-

signed to TOTUSJH for its highest TSS score, whereas

EPSZ gets 1 point based on Figure 6. Finally we add

up all the points for each feature from different models

to get a cumulative ranking as shown in Figure 7.

We further optimize the LR model by tuning the

model hyper-parameter for maximizing SSW and CSW
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Figure 6. Average TSS scores of individual features for
LR. Each score is obtained by training the LR model with
the single parameter as input data, averaged over the output
of the 20 experimental datasets.
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Figure 7. Feature ranking based on cumulative points ob-
tained from F-statistic, RFC, KNN, LR and SVM. Top scor-
ing feature in each model gets 14 points, while lowest scoring
feature gets 1 point. The points are added for each feature
and then the features are ranked accordingly.

metric to see how the ranking of input magnetic features

changes for these two newly introduced space weather

metrics. The left panel in Figure 8 shows the rank-

ing of input features according to their individual SSW

score and the right panel shows the feature ranking with

respect to the CSW score. The major difference is re-

flected in the ranking of the R value. It is the top ranked

feature when the ranking is based on SSW score but its

ranking goes down drastically when it is based on the

CSW score. On the other hand, for the CSW metric
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extensive parameters (area integrated) appear to be the

main contributors.

To study the dependence of model performance on the

number of input AR features, we train our LR model

by eliminating input features one by one and check the

model performance at each step. The elimination is done

by following both the ascending and descending order of

ranking based on the individual TSS, the result of which

is represented in Figure 9. We can see that when we

eliminate the features in their ascending order of ranking

the model performance does not change much. This is

expected because the more important features are elimi-

nated at the last. On the other hand, for descending or-

der we see a drastic fall in model performance when the

number of eliminated features increases beyond 9. This

indicates a significant loss of correlation with the output

labels at each step beyond this point. The plateau in the

descending order plot of Figure 9 is only possible if the

top ranked features are highly correlated among them-

selves, causing no significant loss of information when

these features are thrown out. A study by Hazra et al.

(2015) also confirms the correlation amongst integrated

magnetic features to show the connection between AR

magnetic properties and coronal X-ray flux. The cor-

relogram presented in Figure 10 confirms this, with all

top 8 features, excluding R VALUE, being highly inter-

correlated. One possible reason behind this high correla-

tion could be that they are extrinsic features, or in other

words, their values depend on the size of the AR as they

represent the sums of physical quantities over the entire

AR. As correlated features do not provide new informa-

tion, we group features with correlation constant > 0.9

and train our model by picking up the top-performing

feature from each group. Following this scheme we select

6 features: TOTUSJH, R VALUE, TOTFZ, SAVNCPP,

MEANPOT and SHRGT45. When trained with these

features only, the LR classifier gives an average TSS and

MAC values of 0.962 and 0.981 respectively (with the

SSW and CSW of 0.956 and 0.968), which are close to

our primary model performance with 14 features.

5. CONCLUSIONS

With the advancement of new technologies, especially

in satellite based telecommunications and navigational

networks, a significant fraction of our technological as-

sets has become increasingly vulnerable to space weather

disturbances. This has resulted growing demand for re-

liable space weather forecast. Solar flares strongly in-

fluence the space weather, which is why we address the

problem of predicting solar flares using their source re-

gion characteristics. In this work, we have built a high

performance operational Logistic Regression (LR) clas-

sifier which can differentiate Solar Active Regions (ARs)

based on their flaring capabilities. We have compared

four supervised ML models, all of which perform quite

well in classifying active regions into Positive/Flaring

and Negative/Non-flaring categories. The method we

follow is statistically unbiased due to the use of 20 ran-

domly shuffled replicas of primary dataset for measuring

model performance. The LR classifier delivers the high-

est average TSS score of 0.967 ± 0.018 closely followed

in performance by the Support Vector Machine (SVM)

classifier.

While a direct comparison of the model performances

between our algorithms with previous studies may not

be appropriate due to subtle differences in the data se-

lection scheme and the size of the database used, we do

note that in the context of TSS, we achieve a higher per-

formance score relative to earlier classification attempts

with supervised ML algorithms (e.g., Bobra & Couvidat

2015; Nishizuka et al. 2017; Florios et al. 2018).

One possible reason for achieving a high TSS could be

the exclusion of C class events in the data preparation

stage. The distribution of top five input features in our

dataset are shown in figure 11, where we can see a clear

separation between two cluster of data points for two

different classes. This ensures that our dataset is eas-

ily separable with two distinct classes in feature space.

Other possible reasons could be the different event se-

lection scheme, larger temporal coverage of our dataset

and also it is important to note that each entries in the

negative class comes from a different SHARP regions

ensuring no repetition of active region patches in the

non-flaring class.

In addition to achieving high TSS score, we find that a

global indicator of magnetic twist, estimated by the fea-

ture TOTABSTWIST, plays an important role in pre-

dicting AR flare potential. Although TOTABSTWIST

comes in the fifth position of cumulative feature rank-

ing, other twist related parameters including VTWIST

and MEANALP, are not found to play a significant role.

We have also introduced two new performance indica-

tors, termed as Severe Space Weather (SSW) and Clear

Space Weather (CSW), which are useful in comparing

model performances depending on the operational space

weather condition one wishes to lay more emphasis on.

For example, when the solar activity is high, we may

wish to get a reliable all clear forecast for executing

specific time-critical tasks that are susceptible to space

weather. So, depending on the application and opera-

tional space weather scenario, SSW and CSW can pro-

vide more meaningful operational intelligence than TSS

alone. We can also get an estimate of the model bias

towards a specific forecast by examining the difference
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Figure 8. The left panel (a) shows the feature ranking for LR model when the model is optimized for the metric SSW and the
panel (b) on the right shows the feature ranking when the LR model is optimized for CSW metric.

between SSW and CSW. With these two indicators, we

see that KNN and RFC are more biased towards nega-

tive class (as CSW is much higher than SSW) than SVM

and LR. Because of the larger size of the negative class,

a classifier’s forecast may become biased towards it. But

our analysis shows that classifiers such as LR and SVM

can be suitably optimized to minimize the class imbal-

ance problem significantly.

We have also studied the relative importance of input

features in terms of their ability to classify the flaring

and non-flaring ARs. Based on the global ranking of

Figure 7, we have identified key magnetic features that

are responsible for the flare potential of an AR. The

total unsigned current helicity, total unsigned vertical

current, total unsigned magnetic flux, flux near strong-

field high-gradient neutral-line, and total absolute twist

are the major deciding factors of AR flare potential. It

is important to note that all of highly ranked features in

Figure 7 denote extensive or net properties of an AR, ex-

cept for the R VALUE. This reaffirms previous findings

(Welsch et al. 2009; Hazra et al. 2020) that extensive pa-

rameters contribute more to forecasting algorithms than

intensive parameters. The only non-extensive feature

that performs well is R VALUE, thus indicating that it

contains some unique information regarding flaring po-

tential.

Our analysis shows that for a given classifier, the rank-

ing of input magnetic features differs based on the choice

of the performance metric. For example, the ranking of

R value drops from the top to the 11th rank when we

use CSW as the performance indicator instead of SSW.

The reason behind this drop could be explained from

the probability density plot of the R value in Figure 11

(4th row, right panel), where we can see a very compact

distribution of R values around the mean for the flaring

class. Whereas, for the non-flaring class, R values are

clustered at two different locations resulting in a high

intraclass variance.

We also find that the model performances have very

low dependency on the number of input features espe-

cially when the input features are highly correlated. We

have shown that a high model performance could be

retained even with a smaller set of input magnetic fea-

tures, selected carefully to reduce internal correlation.

Our work brings to fore key properties of parameter-

based ML flare forecasting which can be utilized in fu-

ture works to develop more robust flare forecasting mod-

els. Finally, we anticipate, our comprehensive analysis

will lead to operational flare forecasting with higher ef-

ficiency and higher precision.
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Figure 9. Variation of LR performance with number of in-
put features. The experiment is performed over all 20 exper-
imental datasets (Di). In each step, the eliminated feature
along with its rank is indicated on the top x-axis whereas
the bottom x-axis indicates the total number of eliminated
features at that step.

lized the drms open source software package (Glogowski

et al. 2019) to access data from HMI. The authors ac-

knowledge usage of data from the XRT flare catalogue

and GOES flare database to acquire the information of

flaring events and their corresponding active regions. All

Machine Learning algorithms have been implemented

using the scikit-learn package (Pedregosa et al. 2011)

on Python.

Data Availability: The input magnetic feature

dataset used for this study is freely available on Zen-

odo: doi:10.5281/zenodo.5498347.
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Figure 11. Distribution of magnetic features in positive and negative classes. The left column shows the scatter plot of top
five input features according to the cumulative feature-ranking. X axis of the scatter plot is the normalized event number which
is the number of event divided by the total number of event in that class. The mean values for both the classes are shown. In
the right column, histogram plot of probability density is shown for corresponding features.
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